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The problem of an optimal, from the weight viewpoint, thickness distribution 
law along the length of a cylindrical shell loadod by axisymmetric external 
pressure is examined when collapse occurs because of buckling. The appara- 

tus of the generalized maximum principle is used for the solution [l]. 

1. The problem is formulated in the terminology of the theory of optimal processes. 
The state of the shell during loading is given by the phase coordinates Cpj (i = I$, . . . , 
6) at each instant a, where CZ is the dimensionless length coordinate. A change in the 

phase coordinates, as u changes, corresponds to shell motion. This process can be con- 
trolled by changing the shell thickness 6 (a). The highest derivative 6” (a) p] in the 

motion (stability) equation is taken as the control function, and the functions 6 (a), . . . . 
on-l (a) as the phase coordinates. The problem is to seek a function 6 (a) satisfying 

the stability equations, as well as boundary conditions and constraints, such that the mi- 

nimum of the quantity 1, 1 R 

J= 5 6(a)& 
0 

would be achieved. Here R and L are the shell radius and length, respectively. 
Constraints are imposed from structural or engineering considerations, as well as from 

the strength condition 6 (a) > i)min and the additional condition associated with the 
selected model of shell analysis 6” (a) < a . An optimal shell is sought in the class 
of admissible shells, which can be computed by using the Kirchhoff-Love hypothesis. 

Hence, the stability equations of classical shell theory are taken as the trajectory equa- 
tions, and a constraint from the condition [3] 

1 d6 (CI) ( %I,, 
-z---z-’ H (1.1) 



is imposed on the quantity 6” (a) In investigating other classes of shells, reinforced, 

say, appropriate constraints and stability equations must be given. 

2. The stability equations obtained by using the hypothesis of semi-membrane the- 

ory for shells with an arbitrary change in nonsymmetric thickness relative to the coor- 

dinate surface, are 

A [D (a, p) Acp, (u, P)1 + R2 --&- 1 w “‘“$ ‘) ] + RA [B (a, P) 82”;;:’ ‘)I + 

t R ; LB (3, P) A’P* (a, P)l + Q (4 R $ A’P* (a, P) = 0 

A-$(-&+1), B(a,/3)= E 2(1 -P2) [g2 (a7 8) - 6n,in6 (a, P)l (2.1) 

D (a, P) = 3 (1” p?) IS3 (01, P) - + 6min62 (a, P) TV + akin6 (&y p)) 

Here $ is the arc coordinate, q (a) is the external load, h’ is the Young modulus, and 

[L is the Poisson ratio. The thickness is assumed constant in the arc direction. After 

separation of variables by substituting q* (a, b) = cp (a) cos kfl, Eq. (2.1) is written 

as a system of first order differential equations (in the phase coordinates) 
. 

F, (4 = $$ (2 - pz)k*(k2 - 1) - $- (/t'ps3 - 6rp," f 3q,) - 

- +(2cp," - 2qy( - u), F,(a) q - - h (2q+,cp, - 'pa) 

F, (ct) = - II - h (qs2 - Q), F, (a) = - 2(p, 

6 (a) = f%(P,, h -= .+ /<"(k2- 1) 

The boundary conditions for the solution of the system (2.2) are written from the hinged- 

support conditions on the shell edges 

‘PI = cp3 = 0, (02, cfl - free for c1 = 0 (SO) 

(2.3) 
'PI = Cp3 = 0, (I’.?, (pa - free for a = L/ R (sI) 

The function ups is given as unity on the edge. The problem is to seek a control u == 

u (a) which optimally (in the sense of minimum 1) transfers the object under consi- 

deration from the set s, (cz = 0) into the set S, (a = L / R) and satisfies the sys- 

tern (2.2) and the constraints 
r’<r, ‘P5 > bin I60 (2.4) 

where 1’ is found from the condition (1.1). The solution of the problem posed can be 

obtained by using the theorem called the generalized maximum principle [l]. 

3. The necessary condition of optimality in the presence of constraints for each por- 

tion of the trajectory which does not contain points inside where jump conditions are 

satisfied, is for the problem formulated 
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dTj 8H dSj aH 
-=-=Fj*(~9~9"), rda--&T 

da a$i 3 

H = H ($, U, U, (P) = ZQjFj* (a), 
Fj (4 

Fj* (~1 = ‘~j 

fz (!b, a, u, T) = M (44 a9 CP), Q. (a) = con& & 0 

M ($, a, cp) = aup H (St a, n, ‘P) 

(3.1) 

(3.2) 

must be satisfied at both ends of the trajectory (N = O,l), where vtN, tLv,SN are 

arbitrary constants, Et, (a, rp) = 0 are systems of equations describing the manifolds 

SO and 8, in space. Hence, $2 = $4 = $a = 0, VI, & are arbitrary for cza = 0 
and 9s = $ = qs = 0, ql, I&, qe are arbitrary for a, = L / R. 

We obtain for the system (2.2) 

LI (a) = - 'PI Ih2((P52 - (P5 + '/A +hul - hl%w2 4 Q5v3 - (P3) 

L*(r) = -~('Wl1 + 2(P,%-- 92) - 2% 
H = $0~~5 + Z~‘I’P~ f 4~~s -t- WP~ + $2’ (x) + 95’~a + $6~ 

Let us write the constraints (2.4) in the form of the relationships 

@r(a,cp,~~)=~--r<O, CDs (31, (p, U) = - U - 7 ,( 0 (3.4) 

x3 (3, 'P) = amin i 60 - 95 G 0 (3.5) 

The relationships (3.4) and (3.5) isolate some admissible domain whose boundary is 
formed by the hypersurfaces 

@” (a, cp, U) = 0 (v=i.2) (3.6) 
Z3(%cp)=O (3.7) 

The optimal trajectory cp (a) can contain pieces belonging to the boundary surface 
(3.7). It is customary to call any of the edges of a simply-connected piece belonging 
to the boundary surface 2s (a, (p) = 0 a splice point [Z]; the edge which is the begin- 
ning is the entrance point (z,, cp (z,)), and which is the end is the point of descent 
(7r, cp (tr)). It can turn out that a piece consists of a single splice point, the point of 
reflection of the trajectory cp (a) fr om the boundary x3 (a, cp) = 0 Such a point will 

be simultaneously an entrance point and a point of descent 
The domain u is defined everywhere by the relationships (2.4), to which at the points 

d!‘x:,:di’ = .).a? (CI, I[) = 0 (V = 0, I. . . . . p..-I) (3.8) 



must be added the relationship 

CE PV 
-p .zs (3, ‘p) = (1)s (x, (15, 71) .< (J 
tlr -' 

(3.9) 

In the case under consideration (3.8) and (3.9) have the form 

xl- 
3- 

(1‘s z.zz 0 r:<a = m3 (;I, ‘P, 71) = - 7L < (1 (%I <a <Q) (3.10) 

Conditions (3.8) must be satisfied at the entrance points (x0, cp (%a)) of the admissible 

trajectory on any boundary hypersurface, whereupon the jump condition 

&1/ 111, (x * + CJ), z* ) ‘p (x*)1 = .u 1 q (x* - O), ;I*, ‘p (51*) 1 - 

(3.11) 

i 

P,, - 1, Z,#F;zl 
r-1 = 

P,,’ -1, Zu=t1 

must be satisfied on each simply-connected piece, where %.,I’ are arbitrary constants. It 

is sufficient to satisfy the jump condition once at any point a*of the segment [us, IT,]. 
Because of the jump condition (3.11), the functions ql, qs, qs and $4 are continuous 

and 

Hence xsl = 0, i.e. the function & is also continuous. We obtain from the condition 
of maximum of the function 11 of the variable u (w) 

u = 7 sign K(x, II) (3.12) 

Therefore, we have two systems of sixth order differential equations (2.2) and (3.3) 

and a system of twelve boundary conditions (2.3) and (3.2). which in combination with 

condition (3.12) and (3.10) for the sections of the trajectory lying on the boundary sur- 
face yield the necessary conditions for solution of the problem posed. 

4, Let us use the notation 

U = U (X) = y sign K (a, ‘p) = U” (0 %I X :< Zl) (4.1) 

where ai is the first point of “switching” the control corresponding to the condition 
K (oi, cp) = 0. Let us consider that there are n roots K (a, cp) on the section 
0 < a & L / fi correspondingly, rz points for switching the control u (u). Integrating 
the fifth and sixth equations of the system (2.2) we obtain 
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After substituting the values of (ps (a) and q~+, (a) in the first four equations of the 

systems (2.2) and (3.3), linear systems of equations with variable coefficients are ob- 
tained. The solution of the systems reduces to seeking the eigenvalue 6, corresponding 

to the nontrivial solution. 
The solution of the system (2.2) and (3.3) is represented in a form satisfying the 

system of boundary conditions 

‘pi(a) = ajz (a), +j (a) = bjz (a) (i = I, 2,3,4) 

1 sinmz for odd i 
z(a) = \ r.ns mr for even i 

(4.3) 

After (4.3) has been substituted into the system (2.2) and (3.3). the following equation 
is obtained : 

ix- 

WS ,,,C,_pp,4+h2 
i 
_$T_ ~_~.~_~ 

i=l 
+ Ci2 - Ci)] (cli+l “:i) -i- [,,c’B’ 

-) ( A-h Bi2 + -$- Ui) - /t/ (ZL~ + 
\ 

i + h2 CiaBi - BiCi + +) + h (4AiBi + ( 

+ Biui) - 111’ (2BiCi - Bi)] [G (a:+1 - ai”) - If” + ~111 -t [r,l”Ai + hz( AiCi2- 

- A,(:‘i + CiBi2 - + Bi2 + + Al) - h (4Ai2 + -4,ui) - m2h (BF + 2,<4iCi - 

- A$)] [+ (I$+, - U~“J - ZE1 + I,‘] + [5a ($ AiBi + $ Bi3 + G AiBiCi - 

- AiBi 
) 

- 2m2hAiBi L 4 ] r’l (a:+, - ai”) - Zp + I,‘] + [h2 (AiBi2 + Afii - 

- ~ Ai - ln2hAi2 ~~ (~l~+l- ~1,6) - Zt” -t_ ~4’1 + h2AiBi [~ (a~+l - 
) 

- Q) - zy _t_ z,i ] + ~ Ai3. [t (a~+, - ai’) - I~’ + ~a’] + 4hAi21n (I~’ - 

- lTi) + 6LAiBim (Zi$’ - Zsi) i- 12)~ (Bi2 + 2AiCi - 2Ai) m - 

- 4A,m31 (lit1 - I,‘)} = 0 (4.4) 

Here 

po4 = $& (1 - 11”) k4 (k2 - 1) - &k4 (k2 - 1)’ 



lli = & COS 2ftlCti -I- & Cli sin 2mU; 

l,i z &UiCNS2mUi+ &Cl”‘-- 
( 

1 
Em3 ) 

sin 2WZUi 

1,’ = &ai2- COS 2mai f 6 & ai - 8m~ Ui sin 2ma. I 

1,’ = & Ui4 sin 2mCli - 4 i[ 2m;i] - aia liiF 1 . - 4ma s’n2mai - 1 - ( 8;3 

2m 

ai)cOS 

l,i = 4 ai sin 2VlUi - & 
i 
- &ai'COS 2mUi + 

I,’ = & ai6 sin 2mUi - + 
I 
& az6 co.9 2ma, + -& 

[ 
-& ai sin 2mai - 

6 
-- ( 4m.3 ai 

6 
- 8m” ) sin’ 

1 
2ma, i ai - - - 

rn” y& Cti)COS2Wlai]) 

ai - - 3 16m4 sin 2mCli - - &. COS ai 2mUi 

ki = & Cli sin 2mai - ( 1 1 
xUi2 -- 

4m9 ) 
COS 2mUi 

1,’ = &sin 2ma, - -& CZi COS 2mai 

where Ai*, Bi* and Ci* are coefficents of the parabola (p5 = f&*02 + &*a + 

ci* on each section of the constant sign of u (a), and n is the number of control swit- 

things. 
The value of b,, is determined from the condition that (4.4) equals zero for known 

ua, ai, ct, cs. It is necessary to determine the auxiliary unknowns &and $5 to deter- 

mine the sign of u. and the values of CQ. 
We obtain as a result of integrating the fifth and sixth equations of the system (3.3) : 

I. In the presence of a section of the optimal trajectory on the boundary 53 (71, 
Q, are descent and entrance points of the boundary hypersurface) 

%, = - %a - G4VI (a) i- -41 

%=$o$ $ -i- a,b, Q1 (a) da - A,o + A2 - Qtb4V2 (a) 
0 

(0 c a < Zl) 

” 
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( L 
zaga< R 1 

Al = $5 (O), A2 = $6 (0) 
n 

Ql la) = $ * IL (a) ‘P5 - ZFj (ajl AZ 
0 

Qz (4 = f & L2 (a) da 

0 

2. When the optimum is realized on trajectories not reaching the boundary x3 

0 

The problem of seeking the optimal thickness law 6 (a) reduces to determining the 
unknown constants c,, Ca, A,, Aa, x;, X2, Tr, x2, PO, ua Cti (i = 1,2, . . . . n). 

6. Two cases are possible in the determination of the unknown constants: 
1. The optimal trajectory emerges on the boundary xs. In this case it is necessary 

to determine 10 + n constants. To do this we have the 10 + n conditions 

(Ps(O) = 4.9 $3 (0) = 07 95 (‘GO, .t,) = &in / 6O (5-V 

‘ps (To, %) = 07 q5(Li’R)=0, %l(LIJq=O 

(p5 (727 I?) S 6nin i &9 ‘Pa (r2, ‘Gi) = 0 

+0<09 u. = 7 sign K (a, ‘P) (0 < 3. < al) 

K (ai, v) = 0 (i = 1,2,. . . , n) 

Moreover, u > 0 on the section [a,, ~~1, [aa, ~~1. 
2. The optimal trajectory has no sections lying on the boundary hypersurface 5s. 

Then the Pontriagin maximum principle @] is valid for a problem with moving endpoints 
and fixed time (a, = L / I?). The number of constants diminishes to 6 -I- n 

Cl, C2, A,, A,, qo, uo. ai (i = 1,2,. . . , 4 

The boundaty conditions are 

(Ps(O) = 1, q&(0)=0, *5(L/@=(4 &(LlR)=O 

%Q, u. = 7 sign K (*., cp) (0 < a < ad (5.2) 
K (ai, v) = 0 (i = 1,2,. . . n) 

As computations show, for uniform external pressure the optimum is reached on tra- 
jectories emerging on the boundary only for &,tn / 6, = 1. For 6,,,t,, / b. < 1 the 
case 2 holds. Hence, just two appropriate solutions may be considered. 

Since (p5 (0) = 1 for allli,, / 6,_,= 1, then naturally a, = 0. This alters the bound- 
ary conditions somewhat. The condition I& (0) = 0 is necessary in place of ‘Pa (0) = 0. 
Two modifications are hence possible. 

i). The quantity K (0+, cp) > 0. then u > 0 on the portion IT,,, %t] because 
of condition (3.9), and hence y signli (u,rp) =-= u,. )Y 0, and ‘or = (3. Because of the 
symmetry of the load and the geometry ra = ri -; 11 ! 1:. The C, and L’a are deter- 
mined from the conditions rrj (0) = 1 and qps (0) = 0 , and the expression for (ps (CL) 
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becomes i 

(p5 (Cl) = G(- 1y u&G -+ 2u, 2 [a,,(--l)P+1a ,- 77&')(- l)il 1.1 ((1 <y. $ f,/H) 
p-=1 

From the condition 
?s (L ,I) K) z- 0, Jr = - $“L / R + a,b,I{), (I,, /t) 

and from the condition 
710 m: r $11 K (a, (p) ((’ < 1 < 21) 

and the expression for K (u, cp) we obtain --signA, = 1~~ / y , or taking into ac- 

count the homogeneity of the function H relative to I#, we can set 

-4, = - $- a,b, 

The arbitrary constant Az is determined from the condition 9s (L / K) = 0 

A, = alb, 
LIR 

Finally, the conditions 
0 

K(CQ, v) = 0 (i = I, 2. . . , n) 
result in a system of n equations which in combination with the condition 

should be satisfied by the optimal values of the constants ai, the number of switchings 

n and the sign of ur,. 
ii). The quantity K (Of, cp) < 0. Then u,, = 0 because of the condition 

u > 0 on the section [z,, TJ. Therefore r0 = 0, and r1 should be defined. The 

expressions for (p5 (a) are 
05(W = 1 (0 2:: ct .< Zl) 

95(a)= llzuo(a --T,)" + C,(u - z,) + c, (Tl.=;. CY <Z2) 

Further, C, = 0 and Ca = 1 from the conditions (p5 (rr) =- 1 and ‘ps (z,) = 0. 
Since u (IY~) = u,, > 0, then tI is defined from the condition K (TV, cp) = 0. From 
the condition 9s (U) = 0 we determine AZ = 0. The condition us = -sign A,y 
is not satisfied on the section 0 & u < ‘Go , hence, in this case I&_, = -a,b, < 0 
is assumed because of the homogeneity of H (CC, cp, I+, u) in II,, and we determine Al 
from the condition q5 (L / H) = 0. The remaining conditions 

95 (d = 1, 'PI3 (72) = 0, $,(L / R) = 0 

as well as K (ai, (p) = 0 (i = 1,2, . . . . 12) are used to determine the constants 
X1, xs and all the oi. In the case &tn / 6, < 1 the determination of the integration 
constants is analogous to the case &in / 6, = 1, K (CZ, cp) > 0. The exception is 
the condition qe (0) = 0 which is replaced by the condition $s (0) = 0. 

The dependences obtained to determine the unknown constants in the general case 
are a system of nonlinear algebraic equations whose solution is awkward even in the 

simplest case of n = 1. Hence, an algorithm to calculate the constants on a digital 
computer was constructed for the solution. The program has three branches correspond- 
ing to the cases I) 6,,i,/80 = 13 IT (0, 9) > 0 

a) 6,,,ij,/6n = I * K (O* v) <O 
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Starting with 6 = r&in, the computation is carried out by means of the dependences of 

case 1. A standard program to solve nonlinear algebraic equations is used to determine 
the oi. The integrals in the expressions 

for $,j (a) and IJJ~ (a) are evaluated 
numerically also by using a standard 

program. The values obtained for the 
constants are substituted into (4.4) for 

verification. Upon noncompliance with 
condition i, the computation is carried 

out by condition ii, if (4.4) is not zero, 

ing for case 3. 

Fig. 1 
then the addition &tn + A6 occurs and 
the computation starts from the begin- 

During the computation, the number n is determined for each 6, by comparing seve- 
ral modifications of the computation. Presented in Fig.1 are the results of computing 

the thickness distribution for a cylindrical shell with L I H = 2 taking account of the 

constraint 2s 6 0 and without it. Corresponding to curves 1-4 are 

= 0.08, x9 < 0, 

2 - Q” = 0.035, ami, = 0.08, 

3 - qo = 0.035, I&” = 0,05, 

4 - qo = 0.02, &in = 0,03. 
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